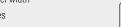


- 1 Aluminum covers available in 1 mm width sections
- 2 4 screw-fixing points for extreme loads
- 3 Can be opened on the inside and the outside for installation of cables and hoses
- 4 Replaceable glide shoes
- 5 Sturdy end connectors made of steel
- 6 Flange connection

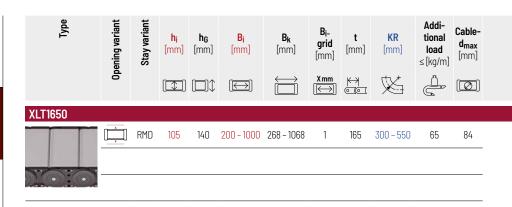
Features

- » Sizes/dimensions
- » Low intrinsic weight
- » Optimum force transmission via the large-surface stroke system (2 disc principle)
- » Plastic side bands in combination with aluminum stays
- » Versions with aluminum stays available in 1 mm width sections up to 1000 mm inner width
- » Can be opened on both sides

- » Large selection of separating options for cables and
- » Optionally with strain relief



Bolted covers systems for maximum stability even for large cable carrier widths


Replaceable glide shoes for long service life for gliding applications

Sturdy end connectors made of steel (different connection variants)

Many separation options for the cables

XLT series | Overview

Travel length ≤ [m] V _{max} ≤ [m/s²] Indicate with the second control of th	Unsuppo	Unsupported arrangement			g arrange	ment	Inner Distribution				Movement			Page
	length	v _{max} ≤[m/s]		length	v max ≤[m/s]		TS0	TS1	TS2	TS3	al hanging standing	n the side	rotating angement	g.
11.75 4 25 350 2 2-3 • • • • - 662				€							vertica or	lyingo	arr	
	11.75	4	25	350	2	2 - 3	•	_	_	•	•	•	_	662
	11./5			<u> </u>		2-3	•			•	•	•		_

XLT1650

Pitch 165 mm

Inner heights 105 mm

Inner widths 200 - 1000 mm

Bending radii 300 - 550 mm

Stay variants

Aluminum stay RMD page 662

Aluminum cover system

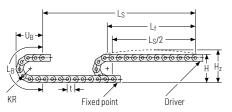
- » Bolted aluminum covers for maximum stability
- » For applications generating swarf or coarse contamination
- » Inside/outside: Threaded joint easy to release.

MT

ROBOTRAX® System

CLEANVEYOR®

LS/LSX series


S/SX series

S/SX-Tubes series

Accessories

XLT1650 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

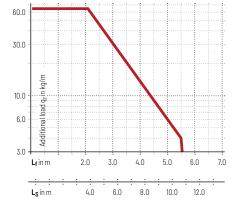
KR	Н	Hz	L_B	U_{B}
[mm]	[mm]	[mm]	[mm]	[mm]
300	740	840	1272	535
350	840	940	1430	585
400	940	1040	1587	635
450	1040	1140	1744	685
500	1140	1240	1901	735
550	1240	1340	2058	785

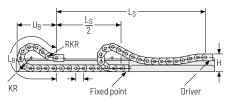
Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific applica-

Intrinsic cable carrier weight $q_k = 13 \text{ kg/m}$. For other inner widths, the maximum additional load changes.

Speed up to 4 m/s


Travel length up to 11.75 m


Acceleration up to 25 m/s²

Additional load up to 65 ka/m

Gliding arrangement

Speed up to 2 m/s Acceleration up to 2-3 m/s2

Travel length up to 350 m

Additional load up to 65 kg/m

The gliding cable carrier must be guided in a channel.

See p. 842.

We recommend the use of glide shoes for gliding applica-

MT

XLT series

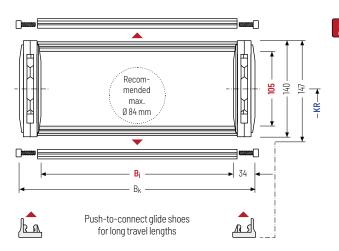
ROBOTRAX® System

CLEANVEYOR®

S/SX-Tubes series

Accessories

Aluminum stay RMD aluminum cover system


- » Bolted aluminum covers for maximum stability
- » For applications generating swarf or coarse contamina-
- » Available customized in 1mm grid.
- » Inside/outside: Threaded joint easy to release.

Stay arrangement on each chain link (VS: fully-stayed)

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

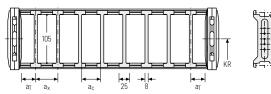
Cable carrier length Lk rounded to pitch t

h _i	h _G	h gʻ	B _i	B_k	KR	q k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
105			200 - 1000		300 350 400 450 500 550	

^{*} in 1 mm width sections

Order example

Divider systems

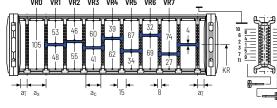

The divider system is mounted on each crossbar as a standard – on every 2nd chain link for stay mounting (HS).

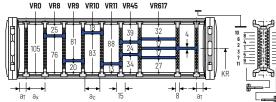
As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

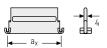
Divider system TSO without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	6	25	17	-

The dividers can be moved in the cross section.

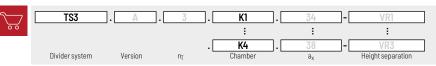



Divider system TS3 with height separation consisting of plastic partitions


Vers.	a_{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	1	16 / 42*	8	2

* For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.



Aluminum partitions in 1 mm increments with **a**_x > **42 mm** are also available.

a _x (center distance of dividers) [mm]											
a _c (nominal width of inner chamber) [mm]											
16	18	23	28	32	33	38	43	48	58	64	68
 8	10	15	20	24	25	30	35	40	50	56	60
 78	80	88	96	112	128	144	160	176	192	208	
 70	72	80	88	104	120	136	152	168	184	200	

When using **plastic partitions with a_x > 112 \text{ mm}**, we recommend an additional center support with a **twin divider** ($S_T = 5 \text{ mm}$). Twin dividers are also suitable for retrofitting in the partition system.

Order example

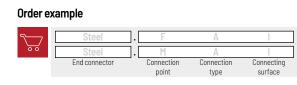
Please state the designation of the divider system **(TS0, TS3)**, the version, and the number of dividers per cross section $[n_T]$. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_T/a_X]$.

XLT1650 | End connectors

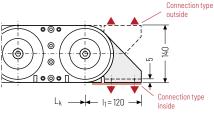
End connectors - steel

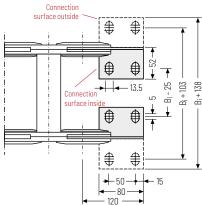
End connectors made of steel. The connection variants on the fixed point and on the driver an be combined and changed

MT

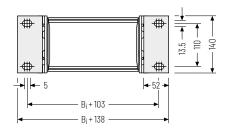

ROBOTRAX® System

CLEANVEYOR®


S/SX series


S/SX-Tubes series


Accessories



later on, if necessary.

▲ Assembly options

Connection point

F - fixed point

M - driver

Connecting surface

A - connecting surface outside connecting surface inside

Connection type

A - threaded joint outside (standard)

I - threaded joint inside

F - flange connection

MT series

XLT series

ROBOTRAX® System

FLATVEY0R®

CLEANVEYOR®

LS/LSX series

S/SX series

S/SX-Tubes series

Accessories

TRAXLINE®