

t1000-4000 - HEAVY-DUTY CLAW COUPLING

Description

The t1000-4000 is a single-row elastomer claw coupling for test beds with a nominal torque of 4000 Nm, and is particularly suited for wheel hub drives. This coupling is characterized by its relatively low weight, very robust design, high damping capability and easy maintenance.

By using elastomers of different hardness grades, the damping characteristics can be adapted to various requirements.

Operating range

Torque: up to 4000 Nm Speed: up to 4000 rpm

Benefits

- suitable for high dynamic loads
- compact and modular design allows fast exchange of the elastomer
- no shaft damage when elastomer fails
- high damping and long lifetime
- stiffness adjustment by elastomer placement

Function

The design provides a strongly non-linear coupling characteristic. The special design allows problem-free adaptation to new applications and a short downtime when exchanging the elastomers.

PC EN 20

Coupling	T_{KN}	T_{Kmax}	T_{KW}	n _{max}	C _{Tdyn}	Ψ	J ₁	J_2	m	Xs	$arphi_{max}$	ϑ
	[Nm]	[Nm]	[Nm]	[rpm]	[Nm/rad]	[-]	[kgm ²]	[kgm ²]	[kg]	[mm]	[°]	[°C]
t1000-4000	4000	1600	4000	4000	55000 - 110000	0.3	3.13E-02	5.21E-02	10.66	30.3	6	+80
T nominal tarqual1				m - mo	m - mass			Tr - rolativo dampina				

nominal torque

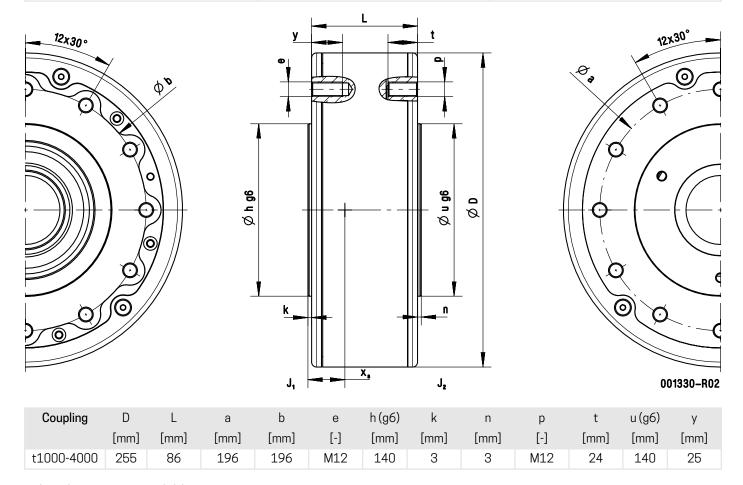
relative damping

 $c_{\text{Tdyn}}\,$ - torsional stiffness

x_s - center of gravity flange-side

- operating temperature 12

 T_{Kmax} - maximum torque


 J_1 - inertia flange-side

 $arphi_{ ext{max}}$ - maximum torsional angle

 n_{max} - maximum speed

J₂ - inertia shaft-side

Elastomer type	M aterial	Shore hardness			
HN		45 - 50° Shore A			
EN	Natural rubber	50 - 55° Shore A			
WN		53 - 58° Shore A			
NN	Naturarrubbei	63 - 68° Shore A			
SN (Standard)		73 - 78° Shore A			
UN		83 - 88° Shore A			

Other dimensions available on request.

PC EN 20 23

¹¹The nominal torque must be equal to or greater than the maximum combustion engine torque

 $^{^{12}} Operating \ temperature \ for \ elastomer \ made \ of \ natural \ rubber, \ elastomer \ made \ of \ silicone \ for \ higher \ operating \ temperatures \ are \ available$ on request